Immuntherapie bei Krebs: KI erkennt geeignete Patienten

Ein lernfähiger Algorithmus erkennt, ob eine Immuntherapie bei Magen- und Darmkrebs Erfolg versprechend ist oder nicht. Bisher war dafür ein umfangreicher Test nötig.

Wissenschaftler mit Tablet. © iStock
(Heidelberg – 12.06.2019) Veränderungen bestimmter Abschnitte im Erbgut eines Krebstumors – den sogenannten Mikrosatelliten – sind ein wichtiger Hinweis darauf, ob bei einem Patienten mit Magen-oder Darmkrebs eine Immuntherapie erfolgreich sein könnte. Bei einer Immuntherapie werden unterschiedliche Therapien angewendet, um das Immunsystem zu beeinflussen. Wissenschaftler der Uniklinik RWTH Aachen, des Deutschen Krebsforschungszentrums und des Nationalen Centrums für Tumorerkrankungen Heidelberg haben einen lernfähigen Algorithmus entwickelt, der eine solche Mikrosatelliteninstabilität direkt aus den Bildern von Gewebeproben vorhersagen kann. Damit könnten Patienten, die von einer Immuntherapie profitieren, eventuell früher identifiziert werden. Die Forschungsergebnisse wurden in der Fachzeitschrift „Nature Medicine" veröffentlicht.

Immuntherapie bei Magen- oder Darmkrebs

Nur wenige Patienten mit Magen- oder Darmkrebs profitieren von einer Immuntherapie. Dabei haben manche Tumoren Veränderungen im Erbgut, sie tragen Mutationen in den als „Mikrosatelliten" bezeichneten, sich häufig wiederholenden Abschnitten des Erbguts. Diese sogenannte Mikrosatelliteninstabilität ist ein charakteristisches Merkmal zur Unterscheidung von verschiedenen Krebsarten des Magen-Darm-Trakts und bestimmt, ob Patienten mit diesen Erkrankungen besonders gut auf eine Immuntherapie mit Checkpoint-Inhibitoren, also bestimmte Arzneistoffe, ansprechen. Üblicherweise benötigt man für die Erkennung dieser Eigenschaften einen genetischen oder immunhistochemischen Test, der zusätzliche Kosten verursacht und in der klinischen Praxis nicht immer bei jedem Patienten durchgeführt wird.

Algorithmus erkennt, ob eine Immuntherapie Erfolg versprechend ist

Die Wissenschaftler aus Aachen und Heidelberg zeigten in Zusammenarbeit mit internationalen Kollegen, dass sich mit einem lernfähigen computergestützten Algorithmus – dem sogenannten Deep Learning – Mikrosatelliteninstabilität direkt aus routinemäßig vorliegenden Bildern von Gewebeproben diagnostizieren lässt, ohne dass zusätzliche Labortests benötigt werden. „Unser Ansatz hat das Potenzial, jeden Patienten mit Darmkrebs automatisch und kosteneffizient auf Mikrosatelliteninstabilität zu testen und somit eine Immuntherapie einer größeren Gruppe von Darmkrebspatienten zukommen zu lassen", sagt Jakob Nikolas Kather, Arzt und Wissenschaftler an der Klinik für Gastroenterologie, Stoffwechselerkrankungen und Internistische Intensivmedizin der Uniklinik RWTH Aachen. „Damit besteht die Möglichkeit, auch Patienten zu identifizieren, bei denen sonst vielleicht nie eine Immuntherapie in Betracht gezogen würde. Allerdings muss dieser Ansatz erst in prospektiven Studien überprüft werden", sagt Dirk Jäger, Ärztlicher und Geschäftsführender Direktor der Abteilung für Medizinische Onkologie am Nationalen Centrums für Tumorerkrankungen in Heidelberg.

Immuntherapie mit Checkpoint-Inhibitoren bei Darmkrebs

Krebs-Immuntherapien mit so genannten Checkpoint-Inhibitoren – Arzneistoffe, die die „Bremsen" der Immunabwehr lösen – haben in den vergangenen Jahren starke Aufmerksamkeit erfahren. Beim Darmkrebs ließen sich allerdings mit den Checkpoint-Inhibitoren bisher lediglich bei den Tumoren Erfolge erzielen, die „Mikrosatelliten-instabil" waren. Bei den häufigeren, „Mikrosatelliten-stabilen" Fällen von Darmkrebs haben die Checkpoint-Inhibitoren in bisherigen Studien keine objektiven Ansprechraten gezeigt. Nach wie vor ist es im Alltag eine Herausforderung vorherzusagen, bei wem die Immuntherapie wirkt. Umso wichtiger ist es, diejenigen, die von einer Immuntherapie profitieren könnten, frühzeitig zu identifizieren.

Künstliche Intelligenz in der Medizin

Künstliche Intelligenz und lernfähige Algorithmen – diese Begriffe werden in der Medizin zunehmend prominenter. Bereits seit langer Zeit wird auf technologische Unterstützung gesetzt. Maschinen werden mit hochvaliden Daten gefüttert und trainieren so den Algorithmus, um große Datenmengen und medizinische Bilder für effizientere und genauere Behandlungen zu analysieren und so beispielsweise Krebszellen automatisiert zu erkennen.
Autoren und Quellen Aktualisiert: 12.06.2019
  • Autor/in: vitanet.de; Kristina Wagenlehner
  • Quellen: Pressemitteilung des Nationalen Centrums für Tumorerkrankungen (NCT) Heidelberg vom 04.06.2019: Magen- und Darmkrebs: Geeignete Patienten für eine Immuntherapie mit künstlicher Intelligenz frühzeitig identifizieren
Suche nach Netzwerk- & Servicepartnern
Zertifizierung